
AutoIt v3: Your
Quick Guide
by Andy Flesner

Copyright © 2007 O’Reilly Media, Inc.

ISBN: 978-0-596-51512-6

Released: September 14, 2007

AutoIt is becoming increasingly popular
in the system administration field as a
tool for automating administrative tasks.
Although this is one of its more popular
uses, you can use AutoIt to automate
anything in a Windows environment.
This powerful scripting language can run
any program and manipulate keyboard
and mouse input. With its RunAs sup-
port, administrators can perform unat-
tended installations and configuration
changes using embedded administrative
privileges.

This guide teaches you the foundations
of the AutoIt v3 language. You will learn
about variables and includes, graphical
user interfaces, user-defined functions,
and conditional and loop statements.
You will then apply what you have
learned in examples related to the system
administration field. The examples in
this Short Cut can be used to create any-
thing from a game modification to a log-
on script that verifies Windows updates.

Contents

Introduction and AutoIt
History .. 2
Variables and Includes 2
Graphical User Interfaces
(GUIs) ... 10
Automation Examples 35
Conclusion 55

Find more at shortcuts.oreilly.com

http://shortcuts.oreilly.com

Introduction and AutoIt History
AutoIt started in late 1998 as a C-compiled program used to automate keystrokes
during software installations. In January 1999, the AutoIt team released AutoIt v1,
which included the Send, Run, RunWait, WinWait, WinWaitClose, WinWaitActive,
WinHide, WinActivate, WinClose, WinRestore, Sleep and SetKeyDelay functions. Au-
toIt v2 was released in August that same year and included the first version of
AutoItX, which offered DLL/COM control. Over the next two years, massive up-
dates to AutoIt v2 added many new functions to the language. In May 2001, the
AutoIt source code was completely rewritten in C++ and development stalled until
2003, when the first beta version of AutoIt v3 was released. Over 100 beta versions
later, the AutoIt developers released AutoIt v3 in February of 2004. February of
2005 marked the release of AutoIt v3.1.0, which added the capability of graphical
user interface (GUI) creation. This version was the most notable release because
it brought AutoIt to the forefront of the scripting world and made it a rival to Visual
Basic Scripting, batch files, and other popular scripting languages. AutoIt is free
to use and has a strong and helpful community base.

This Short Cut is a guide for AutoIt v3.2.4.9, released on May 25, 2007. Download
the latest version of AutoIt here: http://www.autoitscript.com/autoit3/down
loads.php

I recommend using the SciTE AutoIt3 Editor for writing scripts. It has an extensive
help file and color-codes everything nicely. You can download the latest SciTE
AutoIt3 Editor here: http://www.autoitscript.com/autoit3/scite/down
loads.php

Variables and Includes
A variable is simply a named placeholder for a string or array of data. You can use
a variable as many times as you need within a script and it only requires declaration
once. This allows you to manage and manipulate data in a centralized location if
desired.

Variables are a necessity if you want to write robust scripts that are fairly simple
to modify. For example, defining a filename as a variable allows you to change the
filename from a single location instead of changing many static entries. (Using
static data entries can lead to problems.) Example 1 installs two Windows XP
Security updates. Example 2 performs the same operations, but does so using
variables. You may not yet understand everything displayed in the examples; they
are only meant to show that replacing filenames with variables is one way to sim-
plify your code.

AutoIt v3: Your Quick Guide 2

http://www.autoitscript.com/autoit3/downloads.php
http://www.autoitscript.com/autoit3/downloads.php
http://www.autoitscript.com/autoit3/scite/downloads.php
http://www.autoitscript.com/autoit3/scite/downloads.php

Example 1. Windows Update Automation

If @Username <> "Administrator" Then
 RunAsSet("Administrator",@ComputerName,"password")
 install()
 RunAsSet()
Else
 install()
EndIf

Func install()
 RunWait("Windows Update 1.exe /passive /norestart")
 RunWait("Windows Update 2.exe /passive /norestart")
EndFunc

Example 2. Windows Update Automation Using Variables

Global $admin, $password, $program, $program2

$admin = "Administrator"
$password = "password" ; change password to the password for the
Administrator account
; change the following program names to the actual filenames of 2 Windows updates
$program = "Windows Update 1.exe /passive /norestart"
$program2 = "Windows Update 2.exe /passive /norestart"

If @Username <> "Administrator" Then
 RunAsSet($admin,@ComputerName,$password)
 install()
 RunAsSet()
Else
 install()
EndIf

Func install()
 RunWait($program)
 RunWait($program2)
EndFunc

Note how modifying the variables listed in the variable declarations can change
the program names. This practice becomes more useful as you develop more com-
plicated scripts.

Variable Types—Dim, Global, and Local
There are three types of variables in AutoIt:

Dim

Declaring a variable using Dim gives it the scope of its current location within
the script. If the variable is declared outside any functions, its scope is global.

AutoIt v3: Your Quick Guide 3

The following is an example of declaring a Dim variable in the global scope. It
runs setup.exe in the directory where the script is located:

Dim $variable = @ScriptDir & "\setup.exe"
 Run($variable)

The next example shows how declaring a Dim variable inside a function allows
it only Local scope and how the variable is destroyed once the function is com-
plete. The result is a script that errors out when run because $variable is not
declared globally:

function()

 Func function()
 Dim $variable = @ScriptDir & "\setup.exe"
 EndFunc

 Run($variable)

You should explicitly declare variables as Global or Local to avoid problems. If
a Dim variable is declared inside a function but a Global variable already exists,
the Global variable is overwritten. The following example shows what happens
if a Global variable exists when the same variable is declared as Dim within a
function. The result is that setupbad.exe runs instead of setup.exe; the Global
$variable is modified to setupbad.exe because Dim was used to declare the var-
iable locally within the function:

Global $variable = @ScriptDir & "\setup.exe"

 function()

 Func function()
 Dim $variable = @ScriptDir & "\setupbad.exe"
 EndFunc

 Run($variable)

Global

This type of variable can be read from or written to from anywhere in the script.
Global variables can be used in functions without being destroyed when the
functions complete. The following is an example of declaring a Global variable:

Global $variable = 2

Local

A Local variable is used in the scope of a function. Once the function is com-
plete, the variable is destroyed. If a Global variable of the same name already

AutoIt v3: Your Quick Guide 4

exists, the function modifies the Global variable and it is not destroyed when
the function completes. Variables are always checked in the local scope first,
then in the global scope. The following example shows the use of a Local var-
iable within a function:

function()

 Func function()
 Local $variable = @ScriptDir & "\setup.exe"
 Run($variable)
 EndFunc

AutoIt Variable Explicit Declaration Is Not Required

AutoIt does not require the explicit declaration of variables. However, as a
debugging measure it is wise to explicitly declare all variables used within a
script. If you do not explicitly declare variables, it can become very difficult
to find a mistyped variable name that may be causing your script to error on
execution. You should include the following in your scripts to require the
explicit declaration of variables in order to avoid bugs:

Opt("MustDeclareVars", 1)

With this option enabled, all variables must now be explicitly declared using
Global, Local, or Dim.

Constants
A constant is a variable that never changes. It remains a static value for the entire
script execution. You cannot change the value of a constant, nor can you convert
an existing variable into a constant. Placing Const after Dim, Global or Local makes
the variable a constant. You can also declare a constant variable without explicit
declaration. The following example illustrates how to declare a constant variable
in each scenario:
Const $example = 0
Dim Const $example1 = 1
Global Const $example2 = 2
Local Const $example3 = 3

Arrays
An array is a matrix of data in which all the elements are of the same data type and
size. For example, an array of two numbers—“5” and “3”—is declared as follows:
$num[0] = "5"
$num[1] = "3"

AutoIt v3: Your Quick Guide 5

Arrays can also be multidimensional, with up to 64 dimensions. Example 3 shows
a two-dimensional array.

Example 3. Two-Dimensional Array

$letter[0][0] = "w"
$letter[0][1] = "x"
$letter[1][0] = "y"
$letter[1][1] = "z"

A visual representation of Example 3 would be a 2×2 matrix as displayed in
Figure 1.

Note

Variants—Arrays with Differing Data Types

An array using different data types is known as a variant and can contain
anything from a number to a Boolean value. Variants are not restricted in
AutoIt; however, they are not recommended. Using differing data types in
an array—especially arrays within an array—can dramatically decrease the
execution speed of your scripts.

Finding the Correct Include
Includes are files that contain prewritten functions for AutoIt. Think of them as
functions written into your script that you can call to perform actions for you. You
can utilize these files by adding them to your script with the following:
#include <filename.au3>

Table 1 lists the standard includes that accompany the AutoIt v3 installation.

Figure 1. Visual representation of Example 3. Two-Dimensional Array

AutoIt v3: Your Quick Guide 6

Table 1. AutoIt v3 Standard Includes

Include Description

Array.au3 Functions that assist with array management

AVIConstants.au3 AVI Constants

ButtonConstants.au3 Button Constants

Color.au3 Functions that assist with color management

ComboConstants.au3 ComboBox Constants

Constants.au3 Various AutoIt Constants

Date.au3 Functions that assist with dates and times

DateTimeConstants.au3 DateTime Control Constants

EditConstants.au3 Edit Constants

File.au3 Functions that assist with files and directories

GuiCombo.au3 Functions that assist with ComboBox

GUIConstants.au3 Includes all GUI related constants

GUIConstantsEx.au3 Constants to be used in GUI applications

GUIDefaultConstants.au3 GUI default control styles

GuiEdit.au3 Functions that assist with Edit control

GuiIPAddress.au3 Used to create a GUI IP Address Control

GuiList.au3 Functions that assist with Listbox

GuiListView.au3 Functions that assist with ListView

GuiMonthCal.au3 Functions that assist with MonthCal

GuiSlider.au3 Functions that assist with Slider Control “Trackbar”

GuiStatusBar.au3 Functions that assist with the Statusbar control

GuiTab.au3 Functions that assist with the Tab Control

GuiTreeView.au3 Functions that assist with TreeView

IE.au3 Internet Explorer Automation UDF Library for Auto-
It3

Inet.au3 Functions that assist with the Internet

ListBoxConstants.au3 ListBox Constants

ListViewConstants.au3 ListView Constants

Math.au3 Functions that assist with mathematical calculations

AutoIt v3: Your Quick Guide 7

Include Description

Memory.au3 Memory management routines

Misc.au3 Functions that assist with Common Dialogs

Process.au3 Functions that assist with process management

ProgressConstants.au3 Progress Constants

SliderConstants.au3 Slider Constants

Sound.au3 Functions that assist with Sound files

SQLite.au3 Functions that assist access to an SQLite database

SQLite.dll.au3 Inline SQLite3.dll

StaticConstants.au3 Static Constants

StatusBarConstants.au3 StatusBar Constants

String.au3 Functions that assist with String manipulation

TabConstants.au3 Tab Constants

TreeViewConstants.au3 TreeView Constants

UpDownConstants.au3 UpDown Constants

Visa.au3 VISA (GPIB & TCP) library

WindowsConstants.au3 Windows Constants

FileInstall—Including Files in AutoIt Scripts
The FileInstall() function allows the inclusion of any file—such as an executable
or image file—in the compiled script executable. This is similar to #include, but
it dramatically increases the size of your compiled executable in most cases. This
is the syntax of the FileInstall() function:
FileInstall("sourcefile","destination" [,flag])

The flags for FileInstall() are optional. A flag of 0 tells the function not to over-
write existing files. Use a flag of 1 if you would like to overwrite any existing files
the script may encounter. The source file cannot be a variable; it must be a string,
and it cannot contain wildcards.

Example 4 is an installation you can perform with the FileInstall() function that
extracts all installation files to the temp directory. When compiled, the entire in-
stallation is a single executable.

Example 4. Using the FileInstall() Function

#NoTrayIcon
Opt("MustDeclareVars", 1)

AutoIt v3: Your Quick Guide 8

FileInstall("C:\Documents and Settings\Administrator\Desktop\Program\" & _
"Setup.exe", @TempDir & "\Setup.exe", 1)
FileInstall("C:\Documents and Settings\Administrator\Desktop\Program\" & _
"Setup.exe", @TempDir & "\setup.ico", 1)
FileInstall("C:\Documents and Settings\Administrator\Desktop\Program\" & _
"Setup.exe", @TempDir & "\setup.ini", 1)
FileInstall("C:\Documents and Settings\Administrator\Desktop\Program\" & _
"Setup.exe", @TempDir & "\program.dll", 1)
FileInstall("C:\Documents and Settings\Administrator\Desktop\Program\" & _
"Setup.exe", @TempDir & "\readme.txt", 1)

Run(@TempDir & "\Setup.exe")
WinWait("Installation Wizard", "Welcome to the")
If Not WinActive("Installation Wizard", "Welcome to the") Then _
WinActivate("Installation Wizard", "Welcome to the")
WinWaitActive("Installation Wizard", "Welcome to the")
ControlClick("Installation Wizard", "", "Next")
WinWait("Installation Wizard", "Installation Complete")
If Not WinActive("Installation Wizard", "Installation Complete") Then _
WinActivate("Installation Wizard", "Installation Complete")
WinWaitActive("Installation Wizard", "Installation Complete")
ControlClick("Installation Wizard", "", "Finish")

In this example, FileInstall() copies five files to the temp directory, then the Run
() command runs Setup.exe. The program then waits for the installation wizard to
appear using WinWait() and makes it active using WinActivate() before clicking
Next with ControlClick() and then Finish with ControlClick() to complete the
installation.

Line Continuation

An underscore (_) signals that the current line of code continues onto the
next line. This practice keeps code clean and alleviates line wrapping and/
or lines running off the side of the screen when writing or editing scripts.

If the line being separated is a string, it must be closed and linked to a new
string on the following line, as shown in this example:

Incorrect:
"string _
continuation of string"

Correct:
"string" & _
"continuation of string"

AutoIt v3: Your Quick Guide 9

Graphical User Interfaces (GUIs)
One of the newest features of AutoIt is its ability to create graphical user interfaces.
This feature adds an extraordinary amount of possibilities to the already useful
AutoIt language. Some of the most common uses of a GUI are installation menus,
input forms, and progress bars.

I am beginning this section with an example so you can see the layout of GUI creation
and get familiar with the functions used to create GUIs. Example 5 displays a two-
button GUI with instructions and an image. It can be modified and used for anything
you can use a two-button chooser for: an installer for two different programs, a
chooser for two different types of users, etc. You can easily increase the size of the
GUI and create more buttons. You will learn what each GUI function does and how
to configure each of them later on in Example 8.

Example 5. Graphical User Interface—Ai Smart Homes

; Includes the GuiConstants (required for GUI function usage)
#include <GuiConstants.au3>

; Hides tray icon
#NoTrayIcon

; Change to OnEvent mode
Opt('GUIOnEventMode', 1)

; GUI Creation
GuiCreate("Ai Smart Homes - Saint Louis, Missouri", 400, 300)
GuiSetIcon("icon.ico")

; Runs the GUIExit() function if the GUI is closed
GUISetOnEvent($GUI_EVENT_CLOSE, 'GUIExit')

; Logo / Pic
GuiCtrlCreatePic("logo.jpg",120,5,156,160)

; Instructions
GUICtrlCreateLabel("Please Choose an Option Below:", 50, 180, 300, 15, $SS_CENTER)
GUICtrlSetColor(−1,0xFF0000) ; Makes instructions Red

; Button1
GUICtrlCreateButton("Visit Our Website", 100, 210, 200, 30)
GUICtrlSetOnEvent(−1, 'website') ; Runs website() when pressed

; Button2
GUICtrlCreateButton("Send an Email", 100, 250, 200, 30)
GUICtrlSetOnEvent(−1, 'email') ; Runs email() when pressed

AutoIt v3: Your Quick Guide 10

Func website()
 ; Hides the GUI while the function is running
 GUISetState(@SW_HIDE)
 Run("C:\Program Files\Internet Explorer\iexplore.exe www.aismarthomes.com")
 Exit
EndFunc

Func email()
 ; Hides the GUI while the function is running
 GUISetState(@SW_HIDE)
 Run("mailto:contact@aismarthomes.com")
 Exit
EndFunc

; Shows the GUI after the function completes
GUISetState(@SW_SHOW)

; Idles the script in an infinite loop - this MUST be included when using
OnEvent mode
While 1
 Sleep(500)
WEnd

; This function makes the script exit when the GUI is closed
Func GUIExit()
 Exit
EndFunc

Figure 2 displays the GUI created by Example 5. Assuming logo.jpg is in the same
directory as the *.au3 script file when it is compiled, a logo is displayed on the GUI
as shown.

Figure 2. Output of Example 5. Graphical User Interface—Ai Smart Homes

AutoIt v3: Your Quick Guide 11

Note

Comments in a Script

Comments in an AutoIt script can be denoted in two ways:

1. Semicolon. The semicolon denotes the beginning of a comment on a
single line. Anything following a semicolon on a single line is commen-
ted. If your comment runs onto the next line, you must begin that line
with another semicolon or the script reads that line as code and most
likely errors upon execution.

2. #comments-start and #comments-end (also denoted as #cs and #ce).
These commands comment an entire section of text within a script on
multiple lines. Anything after #comments-start or #cs is commented
until #comments-end or #ce is used to close the comment.

GUI Event Modes
How do you make something happen when a button is clicked on your GUI? There
are two different event modes you can use to cause a reaction in your script when
a button is pressed:

1. MessageLoop (default). This is the default mode; it causes the GUI only to
respond to events if the GuiGetMsg() function is called. It is wise to call this
function many times per second in a loop; otherwise, you will have a slow or
unresponsive GUI. The following loop continuously calls the GuiGetMsg()
function until one of the two buttons are pressed or the user attempts to close
the GUI:

While 1
 $guimsg = GuiGetMsg()
 Select
 Case $guimsg = $GUI_EVENT_CLOSE
 Exit ; closes the GUI
 Case $guimsg = $button1
 button1(); runs button1 function
 Case $guimsg = $button2
 button2(); runs button2 function
 EndSelect
 WEnd

Notice that the loop is infinite (noted by While 1; you will learn more about
this in the Conditional and Loop Statements section later in the Short Cut).
The $guimsg variable will be continuously updated by the GuiGetMsg() func-
tion until one of the three cases is satisfied. Choosing Button1 or Button2

AutoIt v3: Your Quick Guide 12

causes a respective function to run. Closing the GUI causes the program to
exit. Example 6 incorporates the GuiGetMsg() loop into a fully functional
script.

Example 6. The GuiGetMsg() Method

; Includes the GuiConstants (required for GUI function usage)
#include <GuiConstants.au3>

; GUI Creation
GuiCreate("Menu", 400, 150)

; Button1
$button1 = GUICtrlCreateButton("Button1", 100, 20, 200, 30)

; Button2
$button2 = GUICtrlCreateButton("Button2", 100, 70, 200, 30)

; Shows the GUI after creation
GUISetState(@SW_SHOW)

Func Function1()
 ; Hides the GUI while the function is running
 GUISetState(@SW_HIDE)
 ; ================
 ; The script you would like to perform for Button1 goes here
 ; ================
EndFunc

Func Function2()
 ; Hides the GUI while the function is running
 GUISetState(@SW_HIDE)
 ; ================
 ; The script you would like to perform for Button2 goes here
 ; ================
EndFunc

While 1
 $guimsg = GuiGetMsg()
 Select
 Case $guimsg = $GUI_EVENT_CLOSE
 Exit ; closes the GUI
 Case $guimsg = $button1
 function1(); runs Button1 function
 Case $guimsg = $button2
 function2(); runs Button2 function
 EndSelect
 WEnd

AutoIt v3: Your Quick Guide 13

2. OnEvent. Denoted by AutoItSetOption('GUIOnEventMode', 1), OnEvent mode
basically pauses the script when something is chosen on the GUI and runs a
function. Once the function is completed, the main script resumes. Exam-
ple 7 shows how to properly use OnEvent mode in a script similar to
Example 6.

Example 7. The GUIOnEventMode Method

; Includes the GuiConstants (required for GUI function usage)
#include <GuiConstants.au3>

; Changes to OnEvent mode
Opt('GUIOnEventMode', 1)

; GUI Creation
GuiCreate("Menu", 400, 150)

; Runs the GUIExit() function if the GUI is closed
GUISetOnEvent($GUI_EVENT_CLOSE, 'GUIExit')

; Button1
GUICtrlCreateButton("Button1", 100, 20, 200, 30)
GUICtrlSetOnEvent(−1, 'Function1') ; run Function1 when pressed

; Button2
GUICtrlCreateButton("Button2", 100, 70, 200, 30)
GUICtrlSetOnEvent(−1, 'Function2') ; run Function2 when pressed

Func Function1()
 ; Hides the GUI while the function is running
 GUISetState(@SW_HIDE)
 ; ================
 ; The script you would like to perform for Button1 goes here
 ; ================
EndFunc

Func Function2()
 ; Hides the GUI while the function is running
 GUISetState(@SW_HIDE)
 ; ================
 ; The script you would like to perform for Button2 goes here
 ; ================
EndFunc

; Shows the GUI after the function completes
GUISetState(@SW_SHOW)

; Idles the script in an infinite loop - this MUST be included when using
; OnEvent mode

AutoIt v3: Your Quick Guide 14

While 1
 Sleep(500)
WEnd

; This function makes the script exit when the GUI is closed
Func GUIExit()
 Exit
EndFunc

Notice the While 1 loop again, just like in MessageLoop mode. This time, instead of
refreshing a variable with the GuiGetMsg() function continuously, OnEvent mode
refreshes the Sleep(500) command (which is a 500 ms timeout) until an event
occurs. If Button1 or Button2 are pressed, their corresponding functions will run.
If the GUI is closed, the script will exit.

Both Example 6 and Example 7 create the GUI shown in Figure 3. Both scripts
perform the same actions, but each uses a different event mode.

When creating a GUI, it is important to decide which type of event mode to use.
Both methods work in any case, but MessageLoop tends to be more suited for a
script where the GUI is the main focus. In a script where the GUI is not the main
or only focus, OnEvent mode tends to be the better solution. In the end, both meth-
ods perform the same set of tasks; they just go about them in different ways.
Choosing between OnEvent and MessageLoop mode is, in most cases, a personal
preference.

GUI Controls
Table 2 lists the controls available in AutoIt, their descriptions, and their associ-
ated functions.

Figure 3. Output from Example 6. The GuiGetMsg() Method and Example 7. The
GUIOnEventMode Method

AutoIt v3: Your Quick Guide 15

Table 2. AutoIt GUI Controls

Control Description Function

AVI Video Clip Inserts an AVI video clip GuiCtrlCreateAvi()

Button creates a button GuiCtrlCreateButton()

Checkbox creates a checkbox GuiCtrlCreateCheckbox()

Combo Box Creates a combo box GuiCtrlCreateComboBox()

Context Menu Creates a context (right-click)
menu for a control of the entire
GUI

GuiCtrlCreateContextMenu
()

Date Creates a date control GuiCtrlCreateDate()

Dummy Creates a dummy control GuiCtrlCreateDummy()

Edit Creates an edit control GuiCtrlCreateEdit()

Group Creates a group control GuiCtrlCreateGroup()

Icon Creates an icon GuiCtrlCreateIcon()

Input Creates an input box GuiCtrlCreateInput()

Label Creates a static text control GuiCtrlCreateLabel()

List Creates a list control GuiCtrlCreateList()

List View Creates a list GuiCtrlCreateListView()

List View Item Creates a list item GuiCtrlCreateListViewItem
()

Menu Creates a menu GuiCtrlCreateMenu()

Menu Item Creates an item for a menu or con-
text menu

GuiCtrlCreateMenuItem()

Object—
ActiveX

Creates an ActiveX control GuiCtrlCreateObj()

Picture Inserts a picture GuiCtrlCreatePic()

Progress Bar Inserts a progress bar GuiCtrlCreateProgress()

Radio Button Inserts a radio button GuiCtrlCreateRadio()

Slider Inserts a slider GuiCtrlCreateSlider()

Tab Creates a tab control GuiCtrlCreateTab()

Tab Item Creates a tab in a tab control GuiCtrlCreateTabItem()

Tree View Creates a tree view control GuiCtrlCreateTreeView()

AutoIt v3: Your Quick Guide 16

Control Description Function

Tree View Item Creates a tree view item GuiCtrlCreateTreeViewItem
()

Up / Down Creates an up/down list control GuiCtrlCreateUpdown()

Example 8 contains examples of every AutoIt GUI control. Each item within the
example is labeled with a comment above it. To learn more about the different
options of each control, look them up in the AutoIt help file.

Example 8. Complete GUI Controls

#include <GuiConstants.au3>

; GUI Creation
GuiCreate("GUI Control Examples", 500, 420)
GuiSetIcon(@WindowsDir & "\explorer.exe", 0)

; Menu Creation
$filemenu = GUICtrlCreateMenu("File")
GUICtrlCreateMenuitem("Example File Menu Item",$filemenu)

; Context Menu
$contextmenu = GUICtrlCreateContextMenu()

; Context Menu Item
GUICtrlCreateMenuitem("Example1",$contextmenu)
GUICtrlCreateMenuitem("",$contextmenu) ; separator
GUICtrlCreateMenuitem("Example2",$contextmenu)

; Tab Creation
GUICtrlCreateTab(0,0,500,400)

; Tab 1 Creation
; ===================
GUICtrlCreateTabItem("AVI,Button,Checkbox,ComboBox")

; AVI
GUICtrlCreateAvi(@WindowsDir & "\clock.avi",-1,10,30,321,321,$ACS_AUTOPLAY)
GUICtrlCreateLabel("AVI Example",140,355,60,15)

; Button
GUICtrlCreateButton("Button Example",350,30,120,30)

; Checkbox
GUICtrlCreateCheckbox("Checkbox Example",350,70,120,30)

; Combo Box
GUICtrlCreateCombo("ComboBox Example",350,110,120,30)

AutoIt v3: Your Quick Guide 17

; Tab 2 Creation
; ===================
GUICtrlCreateTabItem("Group,Date,Dummy,Edit,Icon,Input,List,ListView")

; Start Group
GUICtrlCreateGroup("Group Example",20,40,460,60)

; Date
GUICtrlCreateDate("",30,60,200,25)

; Dummy
$dummybutton = GUICtrlCreateButton("Dummy Example",270,60,200,25)
$dummy = GUICtrlCreateDummy()

; Close Group
GUICtrlCreateGroup("",-99,-99,1,1)

; Edit
GUICtrlCreateEdit("Edit Example",30,120,440,60)

; Icon
GUICtrlCreateIcon(@WindowsDir & "\Cursors\drum.ani",-1,30,200,32,32)
GUICtrlCreateLabel("Icon Example",70,210,80,20)

; Input
GUICtrlCreateInput("Input Example",160,205,300,20)

; List
GUICtrlCreateList("List Example",30,240,440,80)

; List View
$listview = GUICtrlCreateListView("List View Example",30,330,440,60)

; List View Item
GUICtrlCreateListViewItem("List View Item Example",$listview)

; Tab 3 Creation
; ===================
GUICtrlCreateTabItem("ActiveX Object")

; ActiveX Object
GUICtrlCreateLabel("ActiveX Object Example",10,30,140,20)
$ie = ObjCreate("Shell.Explorer.2")
$GUIActiveX = GUICtrlCreateObj($ie,10,50,480,340)
$ie.navigate("http://www.aismarthomes.com")

; Tab 4 Creation
; ===================
GUICtrlCreateTabItem("Picture,Progress,Radio,Slider,TreeView,Updown")

AutoIt v3: Your Quick Guide 18

; Picture
GUICtrlCreatePic(@WindowsDir & "\Blue Lace 16.bmp",10,30,40,40)
GUICtrlCreateLabel("Picture Example",55,45,80,20)

; Progress Bar
GUICtrlCreateLabel("Progress Example",400,70,90,20)
$progress = GUICtrlCreateProgress(10,90,480,25)
GUICtrlSetData($progress,33)

; Radio
GUICtrlCreateRadio("Radio Example",10,140,90,20)

; Slider
GUICtrlCreateLabel("Slider Example",290,170,100,20)
GUICtrlCreateSlider(180,130,280,30)

; Tree View
GUICtrlCreateLabel("Tree View Example",10,200,120,20)
$treeview = GUICtrlCreateTreeView(10,220,480,60)

; Tree View Item
$treetoplevel = GUICtrlCreateTreeViewItem("Tree View Example",$treeview)
GUICtrlCreateTreeViewItem("Subitem1",$treetoplevel)
GUICtrlCreateTreeViewItem("Subitem2",$treetoplevel)

; Up/Down
GUICtrlCreateLabel("Example Updown",10,300,100,20)
$updowninput = GUICtrlCreateInput("0",10,320,480,60)
GUICtrlCreateUpdown($updowninput)

; Close Tabs
GUICtrlCreateTabItem("")

; Display GUI
GuiSetState(@SW_SHOW)

; Continuous Loop to check for GUI Events
While 1
 $guimsg = GUIGetMsg()
 Select
 Case $guimsg = $dummybutton
 GUICtrlSendToDummy($dummy)
 Case $guimsg = $dummy
 MsgBox(0,"Dummy Example","You have clicked the dummy button.")
 Case $guimsg = $GUI_EVENT_CLOSE
 Exit
 EndSelect
Wend

AutoIt v3: Your Quick Guide 19

When run, Example 8 outputs the four tabs shown in Figure 4.

Manipulating Data in GUIs
While creating a GUI, you must assign a variable to any controls that are used as
data in a function. For example, when creating a combo box, assigning a variable
to it allows its value to be checked during a GuiCtrlRead() function. Example 9
shows how to perform an action based on the value of a combo box.

Example 9. GuiCtrlRead()

#include <GuiConstants.au3>

; GUI Creation
GuiCreate("Combo Example",200,80)
; Combo Box Creation
$combobox = GuiCtrlCreateCombo("Notepad",10,10,120,20)
GuiCtrlSetData(−1,"Paint|Command Prompt")

; Button Creation
$button = GuiCtrlCreateButton("Go",10,40,60,20)

Figure 4. Complete GUI Controls Output

AutoIt v3: Your Quick Guide 20

GUISetState(@SW_SHOW)

; Continuous Loop to check for GUI Events
While 1
 $guimsg = GUIGetMsg()
 Select
 Case $guimsg = $button
 MsgBox(0,"","You chose " & GUICtrlRead($combobox) & ".")
 Select
 Case GUICtrlRead($combobox) = "Notepad"
 Run("notepad.exe")
 Exit
 Case GUICtrlRead($combobox) = "Paint"
 Run("mspaint.exe")
 Exit
 Case GUICtrlRead($combobox) = "Command Prompt"
 Run("cmd.exe")
 Exit
 EndSelect
 Case $guimsg = $GUI_EVENT_CLOSE
 Exit
 EndSelect
Wend

Notice the Select...Case that performs actions based on the GUICtrlRead
($combobox) function. It is nested within the initial Select...Case statement that
performs actions based on the GUIGetMsg() function. Example 9 outputs the com-
bo box shown in Figure 5.

User Functions
Functions can be called at any time throughout a script any number of times.
AutoIt comes with predefined functions that perform many different tasks. There
are also many user-defined functions created by the AutoIt community. These
functions were written by AutoIt users and increase the functionality of AutoIt.
You must use the #include command when using these user-defined functions in
a script. You can also create your own functions.

Figure 5. Output of Example 9. GuiCtrlRead()

AutoIt v3: Your Quick Guide 21

Creating Functions—Func, Return, EndFunc
The syntax of a User-Defined Function is as follows:
Func functioname ([Const] [ByRef] $param1, ..., [Const] [ByRef]
$paramN,_
$optionalpar1 = value, ...)
 ...
 [Return [value]]
EndFunc

The following subsections explain the different components of a function.

Const and ByRef
Both Const and ByRef can apply to a single parameter and the order in which they
are written makes no difference. Please keep the following in mind when using
Const and ByRef:

• Const is optional, and only a variable declared as Const can be passed to a
Const parameter in a function.

• ByRef is also optional, and it requires that the input of its parameter is a variable.
When you use this option, any changes are reflected to the original variable.
By default, a copy of the variable is used inside the function.

Parameters
If a parameter is not set with a default value, then it must be declared when calling
the function. A parameter with a default value is known as an optional
parameter. For instance, the following function uses variables with default values
and can be called using those default values as function(). When the function is
run, a message box pops up stating that the value of $z is 5:
Func function($x = 2, $y = 3)
 $x + $y = $z
 MsgBox(0,"$z's value",$z)
EndFunc

The variables can still be declared differently, but defaults are used if the variables
are not explicitly expressed when calling the function. When the function is
changed as follows, variables must be declared when calling the function. An ex-
ample of correctly calling this function is function(5,3) and the resulting message
box would display a value of 8. If either $x or $y is not declared, the function does
not run properly:
Func function($x, $y)
 $x + $y = $z
\ MsgBox(0,"$z's value",$z)
EndFunc

AutoIt v3: Your Quick Guide 22

Return
Use Return to exit the function. The default return value in a user-defined function
is 0, but the return value can be specified. The following example displays a mes-
sage box with the current user’s username:
MsgBox(0,"Currently logged on user",user())

Func user()
 $user = @UserName
 Return $user
EndFunc

User-Defined Functions
There are many user-defined function (UDF) libraries available on the AutoIt fo-
rums. You can find a list of current AutoIt UDF collections here: http://www.au
toitscript.com/forum/index.php?showtopic=45167. The following list de-
scribes some of these UDF libraries:

Auto3Lib

Developed by Paul Campbell (username PaulIA), this UDF library includes over
1,200 functions, including Animation controls, DateTime controls, Header
controls, IPAddress controls, Listbox controls, ListView controls, Menus,
Month Calendar controls, ProgressBar controls, StatusBar controls, Tab con-
trols, ToolbarWindow controls, ToolTip controls, Tree View controls, and
many more.

SysTray_UDF

Developed by user Tuape, this UDF library allows you to read info from system
tray icons and remove them.

Microsoft Word Automation Library

Developed by Bob Anthony (username big_daddy), this UDF library allows you
to create and manipulate Microsoft Word documents.

ExcelCOM_UDF

Developed by user Locodarwin, this UDF library allows you to create and ma-
nipulate Microsoft Excel workbooks.

I have created a sample UDF to find a specific image on-screen based on its Pixel
Checksum() value. The _findchecksum UDF is written below. You must save this
code as findchecksum_UDF.au3 and place it in C:\Program Files\AutoIt3\Include
(or the Include folder wherever your AutoIt3 installation resides if it is not located
in C:\Program Files) or the directory in which you will later save Example 10 in

AutoIt v3: Your Quick Guide 23

http://www.autoitscript.com/forum/index.php?showtopic=45167
http://www.autoitscript.com/forum/index.php?showtopic=45167

order to create and run it. The _findchecksum() function returns 0 if the checksum
is not found or returns an array containing x and y coordinates ([0] being x and
[1] being y) if the checksum is found.

The _findpixelchecksum UDF is well suited for automating tasks where images
must be clicked or moved. A very popular field for this type of automation is video
game modification. There are many online role-playing games for which people
program scripts like this in order to automate crafting, experience “grinding,” and
other sorts of repetitive tasks.
; ===
; _findchecksum UDF v1 - June 24, 2007
; Written by Andy Flesner
; Designed and Tested for Windows XP Service Pack 2
; http://autoit.flesner.com
; ===
#cs
Syntax is as follows: _findchecksum($checksum, $width, $height, $pcolor, $x = 0, _
$y = 0, $d_width = @DesktopWidth, $d_height = @DesktopHeight)

$checksum - the checksum to search for
$width - the width of the checksum area
$height - the height of the checksum area
$pcolor - the pixel color of the top left pixel of the checksum object
$x - the starting x coordinate
$y - the starting y coordinate
$D_Width - Width of the total search area, default is desktop resolution width
$D_Height - Height of the total search area, default is desktop resolution height

The function returns the x and y coordinates of the upper left corner where
the checksum is found as an array. For Example:

 $coordinates = _findchecksum($checksum, $width, $height, $pcolor)

The x coordinate would be $coordinates[0] and the y coordinate would be
$coordinates[1].

If the coordinates are not found, the function returns a value of 0.
#ce
; ===

Func _findchecksum($checksum, $width, $height, $pcolor, $x= 0, $y = 0, _
$d_width = @DesktopWidth, $d_height = @DesktopHeight)
 $current_y = $d_height - 1
 While 1

$xy = PixelSearch($x, $y, $d_width- 1, $current_y, $pcolor)
If @error AND $current_y = ($d_height - 1) Then
 Return 0

AutoIt v3: Your Quick Guide 24

ElseIf @error Then
$x = 0
$y = $current_y + 1
$current_y = ($d_height - 1)
ElseIf $checksum = PixelCheckSum($xy[0], $xy[1],$xy[0] + $width, _
$xy[1] + $height) Then
Return $xy
Else
$x = $xy[0] + 1
$y = $xy[1]
$current_y = $y
EndIf
 WEnd
EndFunc

Example 10 selects an area, finds its checksum, and then finds that checksum on
the screen when a hotkey is pressed.

Example 10. findchecksum() User-Defined Function

#include <findchecksum_UDF.au3>

Global $checksum, $coord,$pcolor

;Specify checksum width
Global $width = 30
;Specify checksum height
Global $height = 30

HotKeySet("{ENTER}","checksum_record")

Global $instructions1 = "Move the mouse to the top left of the search" & @LF & _
"area and then press Enter to record the area."
Global $instructions2 = "Press the F key to find the recorded area."

While $checksum =
""
 $coord = MouseGetPos()
$pcolor = PixelGetColor($coord[0],$coord[1])
ToolTip($instructions1 & @LF & @LF & "x = " & $coord[0] & @LF & "y = " & _
$coord[1] & @LF & @LF & "Decimal Pixel Color = " & $pcolor,$coord[0] - 250, _
$coord[1] - 100)
Sleep(100)
WEnd

HotKeySet("f","checksum_find")

While 1
 ToolTip($instructions2)
 Sleep(100)

AutoIt v3: Your Quick Guide 25

WEnd

Func checksum_record()
 $checksum = PixelChecksum($coord[0], $coord[1], $coord[0] + $width, _
 $coord[1] + $height)
 HotKeySet("{ENTER}")
EndFunc

Func checksum_find()
 ToolTip("")
 $found = _findchecksum($checksum, $width, $height,$pcolor)
 If$found = 0 Then
MsgBox(4096,"Error","Checksum not found.")
Exit
Else
MouseMove($found[0] + ($width / 2), $found[1] + ($height / 2), 1000
)
ToolTip("Found it!")
Sleep(5000)
ToolTip("")
MsgBox(0,"Checksum Found", "Checksum found with center at x=" &_
$found[0] + ($width / 2) & " y=" & $found[1] + ($height / 2)
& ".")
Exit
 EndIf
EndFunc

Run, or compile and run, Example 10. Then move your mouse cursor to an area
on the screen that you would like the program to find, and press Enter. Then move
your cursor to a different point on the screen. By pressing the F key, you prove the
concept of the program and the cursor moves to the center of the checksum that
you told it to store in memory (by pressing Enter earlier). See Figure 6 for an
illustration.

Figure 6. Example 10 findchecksum() User-Defined Function Tooltips

AutoIt v3: Your Quick Guide 26

Conditional and Loop Statements
Conditional and loop statements simplify source code and make complex tasks
possible.

Instead of repeating the same code over and over, you can simply perform a loop
statement to repeat the code until a condition is met. While an expression is true,
your statement will continuously loop.

Conditional statements allow you to perform tasks based on the truth of a given
expression. If the given expression is true, the statement runs.

Conditional Statements
A conditional statement performs actions based on whether certain conditions are
met. There are three types of conditional statements in AutoIt:

1. If...Then...Else. If statements simply perform actions if an expression is true;
otherwise, they perform actions listed after Else.In the following example, the
message box only pops up if $numberequals 2; if not, the script exits:

Global $number = 2
 If $number = 2 Then
 MsgBox(0, "Message", "The value of $number is " & $number & ".")
 Else
 Exit
 EndIf

If statements can also be nested. This means that an If statement can contain
multiple If statements within itself, as shown in the following example:

Global $number = 2
 If @OSVersion = "WIN_XP" Then
 If @Username = "Administrator" Then
 If $number = "2" Then
 MsgBox(0, "Message", "The value of $number is " & $number & ".")
 Else
 Exit
 EndIf
 Else
 MsgBox(4096, "Error", "You must be logged on as Administrator.")
 EndIf
 Else
 MsgBox(4096, "Error", "You must be running Windows XP.")
 EndIf

ElseIf is used to add another expression to evaluate. Usually, a
Select...Case or Switch...Case statement is more effective for evaluating
multiple expressions. The following example displays an If statement that
uses ElseIf:

AutoIt v3: Your Quick Guide 27

If @OSVersion = "WIN_VISTA" Then
 MsgBox(0, "OS Version", "You are running Windows Vista.")
 ElseIf @OSVersion = "WIN_2003" Then
 MsgBox(0, "OS Version", "You are running Windows 2003.")
 ElseIf @OSVersion = "WIN_XP" Then
 MsgBox(0, "OS Version", "You are running Windows XP.")
 ElseIf @OSVersion = "WIN_2000" Then
 MsgBox(0, "OS Version", "You are running Windows 2000.")
 Else
 EndIf

Boolean (AND, OR, NOT) and logical (<,<=, >, >=, <>, =, ==) operators can
be used in Ifstatements. Here is an example that uses both Boolean and logical
operators:

Global $num1 = InputBox("Number 1","Number 1: ","")
 Global $num2 = InputBox("Number 2","Number 2: ","")
 If @OSVersion = "WIN_XP" AND @OSServicePack = "Service Pack 2" Then
 If $num1 + $num2 > 10 Then
 MsgBox(0,"Greater than 10","The sum of Number 1 and Number 2 is " & _
 "greater than 10.")
 ElseIf $num1 + $num2 < 10 Then
 MsgBox(0,"Less than 10","The sum of Number 1 and Number 2 is less " & _
 "than 10.")
 Else
 MsgBox(0,"Must be 10","If not less than or greater than 10, the
sum " & _
 "of Number 1 and Number 2 must be equal to 10.")
 EndIf
 Else
 MsgBox(4096,"Error","You must be running Windows XP SP2.")
 EndIf

If the version of Windows on the user’s machine is not XP Service Pack 2, the
user sees a pop up telling him he must be running Windows XP SP2. If the
user is running XP SP2, the script performs an If statement on the $num1 +
$num2 expression. If the expression is greater or less than 10, the user sees a
message box stating this. If neither of the expressions is true, the sum must
be 10, and the user is prompted with a message stating this fact.

2. Select...Case. In the case of an If statement,an expression is evaluated as true
or false. If the expression is true, the statement associated with the expression
is executed. A Select...Case statement is similar, but instead of evaluating
an expression as true or false,it evaluates multiple expressions at once. An
example of a Select...Case statement follows:

Select
 Case @OSVersion = "WIN_VISTA"
 MsgBox(0, "OS Version", "You are running Windows Vista.")

AutoIt v3: Your Quick Guide 28

 Case @OSVersion = "WIN_2003"
 MsgBox(0, "OS Version", "You are running Windows 2003.")
 Case @OSVersion = "WIN_XP"
 MsgBox(0, "OS Version", "You are running Windows XP.")
 Case @OSVersion = "WIN_2000"
 MsgBox(0, "OS Version", "You are running Windows 2000.")
 EndSelect

A message box tells the user whether the version of Windows running is Vista,
2003, XP, or 2000.

As with If statements, Select...Case statements can be nested and allow the
use of Boolean and logical operators. Instead of Else (as in If statements),
these statements use Case Else, which performs the same task. Case Else runs
if no other case succeeds as true. The following is an example of a nested
Select...Case statement that uses Boolean and logical operators:

Global $num1 = InputBox("Number 1","Number 1: ","")
 Global $num2 = InputBox("Number 2","Number 2: ","")

 Select
 Case @OSVersion = "WIN_XP" AND @OSServicePack = "Service Pack 2"
 Select
 Case $num1 + $num2 > 10
 MsgBox(0,"Greater than 10","The sum of Number 1 and Number
2 " & _
 "is greater than 10.")
 Case $num1 + $num2 < 10
 MsgBox(0,"Less than 10","The sum of Number 1 and Number
2 is " & _
 "less than 10.")
 Case $num1 + $num2 = 10
 MsgBox(0,"Equals 10","The sum of Number 1 and Number 2 is " & _
 "equal to 10.")
 EndSelect
 Case Else
 MsgBox(4096,"Error","You must be running Windows XP SP2.")
 EndSelect

3. Switch...Case. Switch...Case statements are very similar to Select...Case
statements; the difference is the layout of the expressions to be evaluated. In
a Switch...Case statement, the data to be evaluated is declared with Switch.
The script then evaluates each case, just like a Select...Case statement, to
see which is true. (If none are true, the statement within Case Else is execu-
ted.) One advantage of using Switch...Case is the To parameter, which allows
the expression to be true if the value is between a range. Switch...Case state-
ments can also be nested. The following is an example of a nested
Switch...Case statement using the To parameter:

AutoIt v3: Your Quick Guide 29

Global $num1 = InputBox("Number 1","Number 1: ","")
 Global $num2 = InputBox("Number 2","Number 2: ","")

 Switch @OSVersion
 Case "WIN_XP"
 Switch @OSServicePack
 Case "Service Pack 2"
 Switch $num1 + $num2
 Case 0 To 9
 MsgBox(0,"Less than 10","The sum of Number 1 and " & _
 "Number 2 is less than 10.")
 Case 10
 MsgBox(0,"Equals 10","The sum of Number 1 and
Number " & _
 "2 is equal to 10.")
 Case Else
 MsgBox(0,"Greater than 10","The sum of Number
1 and " & _
 "Number 2 is greater than 10.")
 EndSwitch
 Case Else
 MsgBox(4096,"Error","You must be running Windows XP
Service " & _
 "Pack 2.")
 EndSwitch
 Case Else
 MsgBox(4096,"Error","You must be running Windows XP.")
EndSwitch

Loop Statements
Loop statements are just statements that repeat themselves a number of times.
There are four types of loop statement available in AutoIt v3:

1. For...Next. The syntax for a For...Next loop statement is as follows:
For <variable> = <start> To <stop> [Step <stepval>]
 Statements
 ...
Next

A specified variable, which is automatically defined locally even if MustDeclar
eVars is enabled, is stepped to the stop number by <stepval> (default of 1).
The loop is complete once the value of the variable exceeds the <stop> value.
<stop> and <stepval> can be variables, but they are only read when the loop
starts for the first time. For...Next statements can be nested. The following
is an example of a For...Next statement in which the script displays a 10-
second countdown, then pops up a message box that says, “Boom!”:

AutoIt v3: Your Quick Guide 30

For $variable = 10 To 1 Step −1
 SplashTextOn("Countdown",$variable,65,20)
 Sleep(1000)
 Next
 SplashOff()
 MsgBox(0,"", "Boom!")

2. For...In...Next. This type of loop statement is used to evaluate an array of data
or a COM object. This is the For...In...Nextsyntax:

For <variable> In <expression>
 Statements
 ...
Next

If the expression is an object collection with no elements, the script skips the
loop and the variable contains an empty string of data. If the expression is
neither an object nor an array, the script ends with an error unless a custom
error handler is used. For...In...Next statements can also be nested. Here is
an example of using For...In...Next to evaluate an array of data:

Global $array[4]

 $array[0]="w"
 $array[1]="x"
 $array[2]="y"
 $array[3]="z"

 For $element IN $array
 MsgBox(0,"Current $array item",$element)
 Next

3. Do...Until. This type of loop performs its statements until an expression is
true. This is the Do...Until syntax:

Do
 Statements
 ...
 Until <expression>

The expression is tested after performing the statements, so the loop runs at
least once. Do...Until statements can also be nested. The following is an ex-
ample that uses Do...Untilto perform a 10-second countdown and then pop
up a message:

$variable = 10

 Do
 SplashTextOn("Countdown",$variable,65,20)
 Sleep(1000)
 $variable = $variable - 1

AutoIt v3: Your Quick Guide 31

 Until $variable = 0

 SplashOff()
 MsgBox(0,"","Boom!")

4. While...WEnd. While the expression is true, this loop continues executing
down to the WEnd statement. Unlike a Do...Untilstatement, a While loop’s
expression is evaluated at the beginning of the loop. This means that if the
expression is not true at the beginning of the loop, it does not run. The
While...WEnd syntax is as follows:

While <expression>
 Statements
 ...
 Wend

A continuous loop can be created using While...WEndif the expression is set
to 1. This tells AutoIt to run the loop While 1=1. Continuous loops can be
used to force the script to wait for some type of input (a hotkey being pressed,
for instance).

The following is an example of a While...WEndstatement:
$variable = 10

 While $variable > 0
 SplashTextOn("Countdown",$variable,65,20)
 Sleep(1000)
 $variable = $variable - 1
 WEnd

 SplashOff()
 MsgBox(0,"","Boom!")

While $variable is greater than zero, the loop continuously counts down from
10 to 1 each second. After the loop is complete, a message box appears saying,
“Boom!”

With...EndWith
This type of statement doesn’t really fit in as a conditional or loop statement. The
AutoIt help file categorizes With...EndWith statements as loop statements, but their
only use is to simplify object reference code. The syntax for a With...EndWith
statement is as follows:
With <expression>
 Statements
 ...
 EndWith

AutoIt v3: Your Quick Guide 32

The expression must be an object type. Example 11 and Example 12 show object
reference code that is simplified using the With...EndWith statement:

Example 11. Long Method Without Using With...EndWith

#cs
The following script is written without using With...EndWith
#ce

$object = ObjCreate("InternetExplorer.Application.1")

$object.Visible = 1
$object.Height = 768
$object.Width = 1024
$object.Navigate("http://www.aismarthomes.com/")

Example 12. Simplified Code Using With...EndWith

#cs
The following displays how With...EndWith statements simplify Object code
#ce

$object = ObjCreate("InternetExplorer.Application.1")

With $object
 .Visible = 1
 .Height = 768
 .Width = 1024
 .Navigate("http://www.aismarthomes.com/")
EndWith

Notice how the $object is given to .Visible, .Height, .Width, and .Navigate au-
tomatically within the With...EndWith statement. See Figure 7 for the results.

AutoIt v3: Your Quick Guide 33

Figure 7. Example 11 Long Method Without Using With...EndWith, and Example 12.
Simplified Code Using With...EndWith—visible Internet Explorer window with
dimensions of 1024×768

AutoIt v3: Your Quick Guide 34

Component Object Models (COM) Extensions
COM extensions provide a common interface for working with software appli-
cations in a Microsoft environment. Applications have defined COM objects that
can be used in AutoIt (and other programming languages) to manipulate the
applications and perform tasks within them. To use COM objects, you must
know the object name and its properties and methods. To find an application’s
objects, and the object properties and methods, you can utilize Microsoft’s
OLE/COM Object Viewer that is part of the Windows 2000 Resource Kit.
You can download the OLE/COM Object Viewer here:

http://download.microsoft.com/download/win2000platform/oleview/
1.00.0.1/nt5/en-us/oleview_setup.exe

You will likely receive an error about iviewers.dll when you run oleview.exe.
To fix this error, download the following:

http://download.microsoft.com/download/2/f/
1/2f15a59b-6cd7-467b-8ff2-f162c3932235/ovi386.exe

Once downloaded, run ovi386.exe and extract its contents to C:\MSTOOLS
\BIN. Copy iviewers.dll from C:\MSTOOLS\BIN to the directory where you
installed oleview_setup.exe. Then register the DLL using regsvr32
iviewers.dll within the install directory of oleview_setup.exe.

When viewing objects within the OLE/COM Object Viewer, only those ob-
jects with a TypeLib and an IDispatch control can be used within AutoIt.

The following is an example of using COM objects that simply creates an Excel
spreadsheet and then closes Excel:

$oExcel = ObjCreate("Excel.Application") ; creates an Excel object

With $oExcel
 .Visible = 1 ; shows Excel
 .WorkBooks.Add ; creates a new workbook
 .Quit ; closes Excel
EndWith

For more detailed information about COM objects, please read the AutoIt v3
help file.

Automation Examples
With its abilities to modify the registry, copy files, run as another user, control
keyboard and mouse input, and use COM objects, there isn’t much you can’t do with
AutoIt.

AutoIt v3: Your Quick Guide 35

http://download.microsoft.com/download/win2000platform/oleview/1.00.0.1/nt5/en-us/oleview_setup.exe
http://download.microsoft.com/download/win2000platform/oleview/1.00.0.1/nt5/en-us/oleview_setup.exe
http://download.microsoft.com/download/2/f/1/2f15a59b-6cd7-467b-8ff2-f162c3932235/ovi386.exe
http://download.microsoft.com/download/2/f/1/2f15a59b-6cd7-467b-8ff2-f162c3932235/ovi386.exe

This section is full of examples modeled after scripts I have written and used as a
server systems administrator. All of these scripts were rewritten for this book; they
are designed and tested to work with Microsoft Windows XP Service Pack 2.

AntiVirus Compliance Check
This program checks for the existing McAfee AntiVirus version, ePO Agent ver-
sion, and the DAT definition file date. The script was designed to block users from
accessing domain resources if they do not keep their systems AntiVirus compliant.
It first detects a missing AntiVirus and/or an ePO Agent, then verifies that the DAT
definition file is within five business days old (McAfee does not usually release
DAT files on weekends). Lock.exe is referenced in this script. It is listed later in
this guide as User Lockout. Example 13 uses nested If statements,
Select...Case statements, and user-defined functions.

Example 13. AntiVirus Compliance Check

#include <Date.au3> ; Include Date constants

; Declare all Global Variables
;===
Global $dat71, $dat71monthday, $dat71year, _
 $dat71format, $dat80i, $dat80imonthday, _
 $dat80iyear, $dat80iformat, $dat85, _
 $dat85monthday, $dat85monthday, _
 $dat85year, $dat85format, $datdate, _
 $sLongDayName, $currentdate, $datediff, _
 $answer, $username, $epoversion, _
 $eporeg, $updatepath, $weekday

; Finds out who is currently logged onto the machine
;===
$username = EnvGet("USERNAME")

; Pulls ePO Version from the Registry
;===
$eporeg = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Network Associates\ePolicy " & _
"Orchestrator\Application Plugins\EPOAGENT3000","Version")

; Truncates the ePO Version to the leftmost 3 characters
;===
$epoversion = StringLeft($eporeg,3)

If $epoversion = "3.6" Then
 ; Do Nothing
ElseIf $epoversion = "" Then ; If the Agent key is missing, there is no Agent
; installed
 RunWait("Lock.exe","") ; lock the account

AutoIt v3: Your Quick Guide 36

 MsgBox(0,"EPO Agent Not Installed!","You do not have a Virus-Scan Update " & _
 "Agent installed! Your account has been locked out! Click OK to exit.")
 Exit
Else ; If there is an Agent installed, but an outdated version
 RunWait("Lock.exe","") ; lock the account
 MsgBox(0,"EPO Agent Outdated!","You do not have a current Virus-Scan
Update " & _
 "Agent installed! Your account has been locked out! Click OK to exit.")
 Exit
EndIf

; Runs the DatDate() function to determine the age of the installed DAT file
;===
DatDate()

Func DatDate()

 $dat71 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Network Associates\ePolicy " & _
 "Orchestrator\Application Plugins\VIRUSCAN7100","DatDate") ; pulls
 ; registry information for datdate for McAfee Scan Engine 7.1
 $dat71monthday = StringTrimRight($dat71, 5) ; takes the month and
day out of
 ; the datdate key
 $dat71year = StringTrimLeft($dat71, 6) ; takes the year out of
the datdate key
 $dat71format = ($dat71year & "/" & $dat71monthday) ; reorders
the date with
 ; the year first YYYY/MM/DD format for later calculations

 $dat80i = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Network Associates\
ePolicy " & _
 Orchestrator\Application Plugins\VIRUSCAN8000","DatDate") ; pulls registry
 ; information for datdate for McAfee Scan Engine 8.0i
 $dat80imonthday = StringTrimRight($dat80i, 5) ; takes the month and
day out of
 ; the datdate key
 $dat80iyear = StringTrimLeft($dat80i, 6) ; takes the year out of
the datdate key
 $dat80iformat = ($dat80iyear & "/" & $dat80imonthday) ; reorders
the date with
 ; the year first YYYY/MM/DD format for later calculations

 $dat85 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Network Associates\ePolicy " & _
 Orchestrator\Application Plugins\VIRUSCAN8600","DatDate") ; pulls registry
 ; information for datdate for McAfee Scan Engine 8.5.0i
 $dat85monthday = StringTrimRight($dat85, 5) ; takes the month and
day out of
 ; the datdate key
 $dat85year = StringTrimLeft($dat85, 6) ; takes the year out of
the datdate key

AutoIt v3: Your Quick Guide 37

 $dat85format = ($dat85year & "/" & $dat85monthday) ; reorders the
date with
 ; the year first YYYY/MM/DD format for later calculations

 If $dat71 = "" And $dat80i = "" And $dat85 = "" Then
 RunWait("Lock.exe","") ; lock the account
 MsgBox(0,"No Virus Protection Detected!","You are not currently
running " & _
 any anti-virus protection and your account has been locked out. Click " & _
 "OK to close this message.")
 ElseIf $dat71 = "" And $dat80i = "" Then ; engine version is 8.5
 $datdate = $dat85format
 ElseIf $dat71 = "" And $dat85 = "" Then ; engine version is 8.0i
 $datdate = $dat80iformat
 ElseIf $dat80i = "" And $dat85 = "" Then ; engine version is 7.1
 $datdate = $dat71format
 Else
 EndIf

 If FileExists("C:\Program Files\Network Associates\VirusScan\mcupdate.exe")
Then
 $updatepath = "C:\Program Files\Network Associates\VirusScan\mcupdate.exe"
 ElseIf FileExists("C:\Program Files\McAfee\VirusScan Enterprise\mcupdate.exe") _
 Then
 $updatepath = "C:\Program Files\McAfee\VirusScan Enterprise\mcupdate.exe"
 Else
 EndIf

 $sLongDayName = _DateDayOfWeek(@WDAY) ; converts the date into
the current
 ; day of the week for the Select...Case statement
 $currentdate = (@YEAR & "/" & @MON & "/" & @MDAY) ; pieces
together system
 ; variables to come up with the date in YYYY/MM/DD format
 $datediff = _DateDiff('d', $datdate, $currentdate) ; calculates the date
 ; difference between the current date and the DAT date

EndFunc

Select
 Case $sLongDayName = "Monday"
 $weekday = 2
 Case $sLongDayName = "Tuesday"
 $weekday = 2
 Case $sLongDayName = "Wednesday"
 $weekday = 2
 Case $sLongDayName = "Thursday"
 $weekday = 2
 Case $sLongDayName = "Friday"
 $weekday = 2

AutoIt v3: Your Quick Guide 38

 Case $sLongDayName = "Saturday"
 $weekday = 0
 Case $sLongDayName = "Sunday"
 $weekday = 1
EndSelect

If $datediff >= (5 + $weekday) Then ; If the DAT is 5 business days
old or older
 If $username = "Administrator" Then ; pops up an error and closes
the script
 ; if Administrator is the logged in user
 MsgBox(0,"Anti-Virus Out of Date","Your are currently logged onto a " & _
 "machine with out of date Anti-Virus. Click OK to exit.")
 Exit
 Else
 EndIf
 RunWait("Lock.exe","") ; locks the account
 $answer = MsgBox(4,"AntiVirus Warning","Your Anti-Virus definitions
are out " & _
 "of date. Your account is now locked out and will remain locked out until " & _
 "your Anti-Virus is up to date. Would you like to update now?")
 If $answer = 6 Then ; yes is clicked
 RunWait($updatepath) ; runs the Anti-Virus manual update
 DatDate() ; reruns the datdate checker to verify whether the DAT was
 ; successfully updated or not
 If $datediff >= (5 + $weekday) Then ; if the DAT is still
5 business days
 ; or more old then pops up an error message
 MsgBox(0,"Error","Your update was unsuccessful. Click OK to exit.")
 Exit
 ElseIf $datediff < (5 + $weekday) Then ; if the DAT is now
less than 5
 ; days old shows successful pop up
 MsgBox(0,"Update Successful","Your Anti-Virus was successfully " & _
 "updated! Please click OK to exit.")
 Exit
 EndIf
 ElseIf $answer = 7 Then ; no is clicked
 MsgBox(0,"Warning","You have chosen NOT to update your Anti-Virus. " & _
 "Your account will remain locked out until you do so.")
 EndIf
Else
EndIf
Exit

AutoPatcher Fix
The script in Example 14 uses examples of FileCopy, WinWait, WinActive, WinAc
tivate, WinClose, Run, and RunWait. The purpose of this program is to fix some DLL

AutoIt v3: Your Quick Guide 39

registration problems with an old version of AutoPatcher—a free utility used to
update Windows.

Example 14. AutoPatcher Fix

#NoTrayIcon ; Hides tray icon

; Run the Program
;===
Run("C:\Program Files\AutoPatcher\Tools\AutoPatcher Module Editor.exe")

; Wait for the program to Open
;===
WinWait("AutoPatcher Module Editor 2.0","")

; Check to see if the window is active, if not then make it active
;===
If Not WinActive("AutoPatcher Module Editor 2.0","") Then _
WinActivate("AutoPatcher Module Editor 2.0","")

; Wait for the program window to become the active window
;===
WinWaitActive("AutoPatcher Module Editor 2.0","")

; Close the program window
;===
WinClose("AutoPatcher Module Editor 2.0","")

; Copy all files necessary for the fix to C:\WINDOWS\system32 and Overwrite existing
;===
FileCopy("C:\Program Files\AutoPatcher\bin\COMDLG32.OCX", _
"C:\WINDOWS\system32\COMDLG32.OCX",1)
FileCopy("C:\Program Files\AutoPatcher\bin\COMCTL32.OCX", _
"C:\WINDOWS\system32\COMCTL32.OCX",1)
FileCopy("C:\Program Files\AutoPatcher\bin\FM20.DLL","C:\WINDOWS\system32\
FM20.DLL",1)
FileCopy("C:\Program Files\AutoPatcher\bin\FM20ENU.DLL", _
"C:\WINDOWS\system32\FM20ENU.DLL",1)
FileCopy("C:\Program Files\AutoPatcher\bin\MSCOMCTL.OCX", _
"C:\WINDOWS\system32\MSCOMCTL.OCX",1)
FileCopy("C:\Program Files\AutoPatcher\bin\SSubTmr6.dll", _
"C:\WINDOWS\system32\SSubTmr6.dll",1)
FileCopy("C:\Program Files\AutoPatcher\bin\poweroff.exe", _
"C:\WINDOWS\system32\poweroff.exe",1)

; Register all .ocx and .dll files with regsvr32.exe silently
;===
RunWait('regsvr32 "c:\WINDOWS\system32\COMDLG32.OCX" /s')
RunWait('regsvr32 "c:\WINDOWS\system32\COMCTL32.OCX" /s')
RunWait('regsvr32 "c:\WINDOWS\system32\FM20.DLL" /s')

AutoIt v3: Your Quick Guide 40

RunWait('regsvr32 "c:\WINDOWS\system32\FM20ENU.DLL" /s')
RunWait('regsvr32 "c:\WINDOWS\system32\MSCOMCTL.OCX" /s')
RunWait('regsvr32 "c:\WINDOWS\system32\SSubTmr6.dll" /s')

; Run the AutoPatcher program with the defaults.ini settings file in unattended mode
;===
Run('C:\Program Files\AutoPatcher\AutoPatcher.exe /unattend:t2 /noeula " & _
"/noreboot /skipdetection /defaults:C:\Program Files\AutoPatcher\defaults.ini')

Exit ; Exit the script

Change My Documents Location
The program in Example 15 changes the location of the logged-in user’s My
Documents short cut. This example uses keyboard presses and If statements.

Example 15. Change My Documents Location

#NoTrayIcon; Hides tray icon

; Declare Global Variables
;===
Global $username, $newpath

$username = @UserName ; Detects username of current user

; Sets $homepath variable to desired location of My Documents
;===
$newpath = InputBox("New My Docs Location","Please enter the new full path
for " & _
"your My Documents shortcut (a folder named after your username will be created " & _
"here): “,"”)

; Check for the existence of $newpath and create it if it doesn’t already exist
;===
If FileExists($newpath) Then
Else
 DirCreate($newpath)
EndIf

; Open the My Documents Properties window with keyboard commands
;===
Send("{LWINDOWN}d{LWINUP}")
Sleep(500)
Send("my{SPACE}d")
Sleep(500)
Send("{LSHIFT}+{F10}")
Sleep(500)
Send("{UP}{ENTER}")
Sleep(500)

AutoIt v3: Your Quick Guide 41

; Set the My Documents shortcut path to $newpath\$username
;===
Send($newpath & "\" & $username)
Send("{ENTER}")

; Wait 5 seconds for the Move Documents question to pop up, then answer No
;===
WinWait("Move Documents","Would you like to move all",5)
If WinExists("Move Documents","Would you like to move all") Then
 If Not WinActive("Move Documents","Would you like to move all") Then _
 WinActivate("Move Documents","Would you like to move all")
 WinWaitActive("Move Documents","Would you like to move all")
 Send("n")
Else
EndIf

; Wait 5 seconds for the Create Folder question to pop up, then answer No
;===
WinWait("Create Folder","The folder",5)
If WinExists("Create Folder","The folder") Then
 If Not WinActive("Create Folder","The folder") Then _
 WinActivate("Create Folder","The folder")
 WinWaitActive("Create Folder","The folder")
 Send("n")
Else
EndIf
Exit

Figure 8 shows the results.

Data Execution Prevention—Disable
Written to disable DEP in Windows XP, the script in Example 16 reruns itself as
the local Administrator, and then rewrites the boot.ini configuration file.

Figure 8. Prompt from Example 15.Change My Documents Location

AutoIt v3: Your Quick Guide 42

Example 16. Data Execution Prevention—Disable

#NoTrayIcon ; Hides tray icon

; Declare Global Variables
;===
Global $admin, $password

$admin = "Administrator"
$password = "password"

; The following IF statement forces the script to rerun itself as the Administrator
;===
If Not $CMDLINE[0] Then
 RunAsSet($admin, @Computername, $password)
 If @Compiled Then
 RunWait('"' & @ScriptFullPath & '" /admin')
 Else
 RunWait('"' & @AutoItExe & '" "' & @ScriptFullPath & '" /admin')
 EndIf
 RunAsSet()
ElseIf $CMDLINE[0] And $CMDLINE[1] = '/admin' Then
 FileSetAttrib("C:\boot.ini","-R") ; removes the Read-Only attribute
from boot.ini
 FileDelete("C:\boot.ini") ; deletes the original boot.ini
 IniWrite("C:\boot.ini","boot loader","timeout","30") ; writes first line
of new
 ; boot.ini
 IniWrite("C:\boot.ini","boot loader","default", _
 "multi(0)disk(0)rdisk(0)partition(1)\WINDOWS") _
 ; writes second line of new boot.ini
 IniWrite("C:\boot.ini","operating systems","multi(0)disk(0)rdisk(0)" & _
 "partition(1)\WINDOWS",'"Microsoft Windows XP Professional" /fastdetect " & _
 "/NoExecute=OptIn') _
 ; writes final line of new boot.ini including the /NoExecute=OptIn switch to
 ; disable DEP
 FileSetAttrib("C:\boot.ini","+RH") ; sets attributes on new boot.ini file to
 ; Read-Only and Hidden
EndIf

Outlook XP Preview Pane—Disable
The short and simple script in Example 17 writes a registry key that disables the
Outlook Preview Pane in Outlook XP.

Example 17. Outlook XP Preview Pane—Disable

#NoTrayIcon ; Hides tray icon

; Writes registry key to disable the Outlook Preview Pane in OfficeXP
;===

AutoIt v3: Your Quick Guide 43

RegWrite("HKEY_CLASSES_ROOT\CLSID\{00020D75-0000-0000-C000-000000000046}" & _
"\Shell\Open\Command","","REG_SZ",'"C:\PROGRA~1\MICROS~2\Office10\OUTLOOK.EXE"' & _
'/nopreview')

Enable Remote Desktop Connection and NetMeeting
Here is another example of a script that reruns itself as the local Administrator.
Example 18 enables Remote Desktop Connections and NetMeeting on the local
machine.

Example 18. Enable Remote Desktop Connection and NetMeeting

#NoTrayIcon ; Hides tray icon

; Declare Global Variables
;===
Global $admin, $password

$admin = "Administrator"
$password = "password"

; The following IF statement forces the script to rerun itself as the Administrator
;===
If Not $CMDLINE[0] Then
 RunAsSet($admin, @Computername, $password)
 If @Compiled Then
 RunWait('"' & @ScriptFullPath & '" /admin')
 Else
 RunWait('"' & @AutoItExe & '" "' & @ScriptFullPath & '" /admin')
 EndIf
 RunAsSet()
ElseIf $CMDLINE[0] And $CMDLINE[1] = '/admin' Then
 RegWrite("HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal " & _
 "Server","fDenyTSConnections","REG_DWORD",0) ; writes value to enable RDP
 RegWrite("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Conferencing\Mcpt", _
 "Fpx","REG_BINARY","01000000") ; writes value to enable Netmeeting
EndIf

Microsoft Windows XP Update Verifier
The program in Example 19 checks for the existence of various critical Windows
XP Post-SP2 updates since August 2006. It only runs on Windows XP SP2; any
other operating system forces the program to exit. For the May 2007 Internet Ex-
plorer 6 patch, the script only installs the update if IE6 is detected on the machine.
This example does not include every critical security patch since August 2006.
Lock.exe is referenced in this script;it is listed later in this guide as User Lockout.

Example 19. Microsoft Windows XP Update Verifier

#NoTrayIcon ; Hides tray icon

AutoIt v3: Your Quick Guide 44

;Restricts to English - United States Operating Systems
;===
If Not (@OSLang = "0409") Then
 Exit
EndIf

; If not Win_XP then Exit
;===
If @OSVersion <> "Win_XP" Then
 Exit
EndIf

;If the computer is the following machine, don’t run this script
;===
If @ComputerName = "Computer" Then
 Exit
EndIf

;Global Variables not related to XP or 2K specifically
;===
Global $ieversion = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\" & _
"Internet Explorer","Version")

;Global Variables for XP Patches
;===
;August 2006 Updates
Global $XPKB921883,$XPKB920214,$XPKB920670,$XPKB920683,$XPKB921398, _
$XPKB922616,$XPKB918899

;September 2006 Updates
Global $XPKB919007,$XPKB920685,$XPKB925486

;October 2006 Updates
Global $XPKB922819,$XPKB923191,$XPKB923414,$XPKB924191,$XPKB924496

;November 2006 Updates
Global $XPKB920213, $XPKB924270

;January 2007 Updates
Global $XPKB926255

;February 2007 Updates
Global $XPKB928843,$XPKB926436,$XPKB924667,$XPKB918118

;April 2007 Updates
Global $XPKB925902, $XPKB930178, $XPKB931261, $XPKB931784, $XPKB932168

;May 2007 Updates
Global $XPKB931768

AutoIt v3: Your Quick Guide 45

; Check for WinXP SP2
;===
If @OSServicePack = "Service Pack 2" Then
 WinXPUpdate()
Else
 MsgBox(48,"Error","Your System is not running Windows XP Service Pack 2.")
 RunWait("lock.exe","")
 Exit
EndIf

;Windows XP Patch check routine
;===============================
Func WinXPUpdate()

 ;August 2006 Updates
 $XPKB920214 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB920214","Description")
 $XPKB920670 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB920670","Description")
 $XPKB920683 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB920683","Description")
 $XPKB921398 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB921398","Description")
 $XPKB922616 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB922616","Description")

 If $XPKB920214 = "" Or $XPKB920670 = "" Or $XPKB920683 = "" Or
$XPKB921398 = "" _
 Or $XPKB922616 = "" Then
 Lock()
 EndIf

 ;September 2006 Updates
 ;==================
 $XPKB919007 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB919007","Description")
 $XPKB920685 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB920685","Description")
 $XPKB925486 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB925486","Description")

 If $XPKB919007 = "" Or $XPKB920685 = "" Then

AutoIt v3: Your Quick Guide 46

 Lock()
 EndIf

 ;October 2006 Updates
 ;================
 $XPKB922819 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB922819","Description")
 $XPKB923191 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB923191","Description")
 $XPKB923414 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB923414","Description")
 $XPKB924191 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB924191","Description")
 $XPKB924496 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB924496","Description")

 If $XPKB922819 = "" Or $XPKB923191 = "" Or $XPKB923414 = "" Or
$XPKB924191 = "" _
 Or $XPKB924496 = "" Then
 Lock()
 EndIf

 ;November 2006 Updates
 ;================
 $XPKB920213 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB920213","Description")
 $XPKB924270 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB924270","Description")

 If $XPKB920213 = "" Or $XPKB924270 = "" Then
 Lock()
 EndIf

 ;January 2007 Updates
 ;================
 $XPKB926255 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB926255","Description")

 If $XPKB926255 = "" Then
 Lock()
 EndIf

AutoIt v3: Your Quick Guide 47

 ;February 2007 Updates
 ;================
 $XPKB928843 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB928843","Description")
 $XPKB926436 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB926436","Description")
 $XPKB924667 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB924667","Description")
 $XPKB918118 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB918118","Description")

 If $XPKB928843 = "" Or $XPKB926436 = "" Or $XPKB924667 = "" Or
$XPKB918118 = "" _
 Then
 Lock()
 EndIf

 ;April 2007 Updates
 ;================
 $XPKB925902 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB925902","Description")
 $XPKB930178 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB930178","Description")
 $XPKB931261 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB931261","Description")
 $XPKB931784 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB931784","Description")
 $XPKB932168 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB932168","Description")

 If $XPKB925902 = "" Or $XPKB930178 = "" Or $XPKB931261 = "" Or
$XPKB931784 = "" _
 Or $XPKB932168 = "" Then
 Lock()
 EndIf

 ;May 2007 Updates
 ;================
 $XPKB931768 = RegRead("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Updates\
Windows " & _
 "XP\SP3\KB931768","Description")

AutoIt v3: Your Quick Guide 48

 If $XPKB931768 = "" Then
 If StringLeft($ieversion,1) = "6" Then
 Lock()
 Else
 EndIf
 EndIf

EndFunc

;===
;Prompt and Lockout Function to notify users they are not updated
;===

Func Lock()
 RunWait("lock.exe","")
 Sleep(2000)
 MsgBox(48,"Attention!","You are missing Microsoft Windows XP Critical " & _
 "Security Patches, please install them.")
 Exit
EndFunc

Proxy Server Detector for Internet Explorer
The program in Example 20 pings proxy servers and sets Internet Explorer to use
the first proxy that it can ping successfully. Replace “proxy1,” “proxy2,” “proxy3,”
etc. with valid proxy server IP addresses, and replace “portnumber” with a valid
port number for the respective proxy server.

Example 20. Proxy Server Detector for Internet Explorer

#NoTrayIcon ; Hides tray icon

; Ping first proxy server then set it if pingable
;===
If Ping("proxy1") Then
 RegWrite("HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\" & _
 "Internet Settings","ProxyEnable","REG_DWORD",1)
 RegWrite("HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\" & _
 "Internet Settings","ProxyServer","REG_SZ","proxy1:portnumber")
 RegWrite("HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\" & _
 "Internet Settings","ProxyOverride","REG_SZ","<local>")

; Ping second proxy server then set it if pingable
;===
ElseIf Ping("proxy2") Then
 RegWrite("HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\" & _
 "Internet Settings","ProxyEnable","REG_DWORD",1)
 RegWrite("HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\" & _
 "Internet Settings","ProxyServer","REG_SZ","proxy2:portnumber")

AutoIt v3: Your Quick Guide 49

 RegWrite("HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\" & _
 "Internet Settings","ProxyOverride","REG_SZ","<local>")

; Ping third proxy server then set it if pingable
;===
ElseIf Ping("proxy3") Then
 RegWrite("HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\" & _
 "Internet Settings","ProxyEnable","REG_DWORD",1)
 RegWrite("HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\" & _
 "Internet Settings","ProxyServer","REG_SZ","proxy3:portnumber")
 RegWrite("HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\" & _
 "Internet Settings","ProxyOverride","REG_SZ","<local>")

; Ping fourth proxy server then set it if pingable
;===
ElseIf Ping("proxy4") Then
 RegWrite("HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\" & _
 "Internet Settings","ProxyEnable","REG_DWORD",1)
 RegWrite("HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\" & _
 "Internet Settings","ProxyServer","REG_SZ","proxy4:portnumber")
 RegWrite("HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\" & _
 "Internet Settings","ProxyOverride","REG_SZ","<local>")

; Disable proxy settings if no proxy server is reachable
;===
Else
 RegWrite("HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\" & _
 "Internet Settings","ProxyEnable","REG_DWORD",0)
EndIf

Run("C:\Program Files\Internet Explorer\IEXPLORE.EXE") ; Run Internet Explorer

User Lockout
Example 21 uses a purposely failed network drive mapping to the C$ admin share
on the local machine repeatedly to lock out a user’s account. You can use a local
or domain account, but you must set the loop count above the lockout threshold
as set by your group policy or local security policy.

Example 21. User Lockout

#NoTrayIcon ; Hides tray icon

If @UserName = "Administrator" Then
 Exit
; ElseIf @UserName = “user” Then
 ; Exit

AutoIt v3: Your Quick Guide 50

Else
 LockAcct() ; run the lockout function if the user is not exempt
EndIf

Func LockAcct()
 $i = 0
 While $i < 4 ; loops 4 times to lockout the current user’s account
 RunWait(@ComSpec & " /c " & "net use * \\127.0.0.1\C$ BadPassword " & _
 "/USER:DOMAIN\%USERNAME%","",@SW_HIDE)
 $i = $i + 1
 WEnd
EndFunc

User SID Lookup
Written to solve the issue of finding a user’s SID in Windows, this utility can find
a SID on the local machine or on a domain. Example 22 uses COM objects as
well as the A3LSecurity.au3 include from the Auto3Lib UDF library mentioned
earlier in this Short Cut.

Example 22. User SID Lookup

#NoTrayIcon ; Hides tray icon
#include <A3LSecurity.au3>

Opt("MustDeclareVars", 1)

Global $sUser, $aName

$sUser = InputBox("SID Lookup", "Enter UserName:", "", "", 200, 130)

If @Error <> 0 Then Exit

$aName = _Security_LookupAccountName($sUser)
If @Error = 0 Then
 MsgBox(0,"SID Lookup","SID: " & $aName[0] & @CR & _
 "Domain ..: " & $aName[1] & @CR & _
 "SID Type : " & _Security_SidTypeStr($aName[2]))
Else
 MsgBox(0,"SID Lookup","Invalid user name")
EndIf

Figure 9 shows the results.

Word Document Title Changer
This program was written using the Microsoft Word Automation Library men-
tioned earlier in the user-defined functions section. The script in Example 23

AutoIt v3: Your Quick Guide 51

scours a directory for *.doc files, and then sets the Title property of each file to its
filename while keeping modified dates intact.

Example 23. Word Document Title Changer

#NoTrayIcon ; Hides tray icon

; Include File, Word, and GUI Constants
;===
#include <file.au3>
#include <Word.au3>
#include <GuiConstants.au3>

; Change to OnEvent Mode
;===
Opt('GUIOnEventMode', 1)

; Declare Global Variables
;===
Global $LogPath, $DocPath, $progress, $progresspercent

; GUI
GUICreate("Microsoft Word Document Title Changer", 320, 250)
GUISetIcon("icon.ico")
GUISetOnEvent($GUI_EVENT_CLOSE, 'Event_GUIClose')

; PIC
GUICtrlCreatePic("logo.gif", 128.5, 5, 63, 56)

; Log Path
GUICtrlCreateLabel("Please type the full path where you would", 10, 70, 300, 15, _
$SS_CENTER)
GUICtrlCreateLabel("like to save the log file:", 10, 85, 300, 15, $SS_CENTER)
$LogPath = GUICtrlCreateInput("", 10, 105, 300, 20)

; Modification Path
GUICtrlCreateLabel("Please type the full path of the directory", 10, 130, 300, 15, _
$SS_CENTER)
GUICtrlCreateLabel("you would like files changed in:", 10, 145, 300, 15, $SS_CENTER
)
$DocPath = GUICtrlCreateInput("", 10, 165, 300, 20)

Figure 9. Prompt from Example 22.User SID Lookup

AutoIt v3: Your Quick Guide 52

; Button
GUICtrlCreateButton("Go!", 45, 200, 230, 30)
GUICtrlSetOnEvent(−1, 'TitleChange')

GUISetState(@SW_SHOW) ; show the GUI

While 1
 Sleep(250)
WEnd

Func TitleChange()
 ; Hide the GUI while the function is running
 ;===
 GUISetState(@SW_HIDE)

 _WordErrorHandlerRegister()

 ; Opens Word
 ;===
 $oWordApp = _WordCreate("", 0, 0, 0)

 ; Creates $sDocPath variable based on the entry in the GUI for the Change path
 ;===
 $sDocPath = GUICtrlRead($DocPath)

 ; Adds trailing backslash if it doesn’t exist
 ;===
 If StringRight($sDocPath, 1) <> "\" Then
 $sDocPath &= "\"
 EndIf
 $logpathfirst = GUICtrlRead($LogPath)
 If StringRight($logpathfirst, 1) <> "\" Then
 $logpathfirst &= "\"
 EndIf

 ; Creates $sLogPath variable based on the entry in the GUI for the Log path
 ;===
 $sLogPath = $logpathfirst & "wordtitle.log"

 ; Pulls the filenames of all files in the Change directory
 ;===
 $search = FileFindFirstFile($sDocPath & "*.doc")
 $filelist = _FileListToArray($sDocPath,"*.doc",1)

 ; Calculates the percentage change of each doc file toward the total number
 ;===
 $filepercent = 100 / $filelist[0]

 ; Check if the search for *.doc was successful

AutoIt v3: Your Quick Guide 53

 ;===
 If $search = −1 Then
 MsgBox(0, "Error", "No files/directories matched the search pattern")
 Exit
 EndIf

 ; Opens the log file for writing
 ;===
 FileOpen($sLogPath, 1)

 ; Turns on the Progress Bar
 ;===
 ProgressOn("Doc Title Change Progress","Word Document titles " & _
 "changing...","",300,200,16)

 While 1 ; loops until there are no more *.doc files
 $file = FileFindNextFile($search)
 If @error Then ; if the last file listed was not *.doc then the
loop exits
 ProgressOff() ; turns off progress bar
 ExitLoop ; exits the While...WEnd statement
 Else
 EndIf
 $filetime = FileGetTime($sDocPath & $file,0,1) ; pulls the
Modified Date
 ; from file properties
 $oDoc = _WordDocOpen($oWordApp, $sDocPath & $file) ; opens
the last found
 ; *.doc file
 $sTitle = _WordDocPropertyGet($oDoc, "Title") ; gets original
title of Word
 ; Doc
 ; Writes the old title to the log file
 ;===
 FileWriteLine($sLogPath, "===========================")
 FileWriteLine($sLogPath, $sDocPath & $file)
 FileWriteLine($sLogPath, "===========================")
 FileWriteLine($sLogPath, "Old Title was: " & $sTitle)
 ; Creates $sFileName variable based on the filename and removes the trailing
 ; .doc
 ;===
 $sFileName = StringTrimRight($file, StringLen($file) -
StringInStr($file, _
 ".", Default, −1) + 1)
 _WordDocPropertySet($oDoc, "Title", $sFileName) ; sets new title
to $sFileName
 $sTitleNew = _WordDocPropertyGet($oDoc, “Title”) ; gets new title
for Log
 ; Write the new title and the modification date to the log file
 ;===

AutoIt v3: Your Quick Guide 54

 FileWriteLine($sLogPath, “New Title is: " & $sTitleNew)
 FileWriteLine($sLogPath, “Modification Date: " & $filetime)
 FileWriteLine($sLogPath, "")
 FileWriteLine($sLogPath, "")
 _WordDocClose($oDoc, −1) ; closes the Word doc saving changes made
 FileSetTime($sDocPath & $file,$filetime,0) ; sets the
modification date back
 ; to the original time/date
 $progress = $progress + $filepercent ; adds the percentage change of
 ; completing one file to the progress bar
 $progresspercent = StringLeft($progress,2) ; trims the percentage
to 2
 ; characters
 ProgressSet($progress,$progresspercent & " % completed...")
; sets the
 ; progress bar to the current completion %
 WEnd

 FileClose($sLogPath) ; Closes log file
 FileClose($search) ; Closes the search handle
 _WordQuit($oWordApp) ; Closes MS Word
 MsgBox(0,"Completed","All Word Documents in " & $sDocPath & " have
had their " & _
 "titles changed to their corresponding filenames. The modification dates on " & _
 "the files have remained intact.")
 Exit
EndFunc

; Closes the GUI if the X button is pressed to exit
;===
Func Event_GUIClose()
 Exit
EndFunc

Figure 10 shows the results.

Conclusion
By reading this guide to AutoIt v3, you have learned about variables and includes,
graphical user interfaces, user functions, and conditional and loop statements. The
sections and examples have given you the foundation for building any program
possible in the AutoIt language. The final section of this Short Cut has provided
automation examples that apply its teachings in real world environments. Many
of these examples can be used by system administrators or can be modified and
used for other purposes. AutoIt v3: Your Quick Guide is designed to be a continual
reference for you as you develop your skills as an AutoIt programmer.

AutoIt v3: Your Quick Guide 55

You should now be confident in your ability to conquer any automation task before
you.

Figure 10. Prompt from Example 23.Word Document Title Changer

AutoIt v3: Your Quick Guide 56

	Introduction and AutoIt History
	Variables and Includes
	Variable Types—Dim, Global, and Local
	Constants
	Arrays

	Finding the Correct Include
	FileInstall—Including Files in AutoIt Scripts

	Graphical User Interfaces (GUIs)
	GUI Event Modes
	GUI Controls
	Manipulating Data in GUIs
	User Functions
	Creating Functions—Func, Return, EndFunc
	Const and ByRef
	Parameters
	Return

	User-Defined Functions

	Conditional and Loop Statements
	Conditional Statements
	Loop Statements
	With...EndWith

	Automation Examples
	AntiVirus Compliance Check
	AutoPatcher Fix
	Change My Documents Location
	Data Execution Prevention—Disable
	Outlook XP Preview Pane—Disable
	Enable Remote Desktop Connection and NetMeeting
	Microsoft Windows XP Update Verifier
	Proxy Server Detector for Internet Explorer
	User Lockout
	User SID Lookup
	Word Document Title Changer

	Conclusion

